CALIBRATION OF ENSEMBLE SPREAD USING FORECAST SPECTRA

Joshua P. Hacker and David P. Baumhefner

hacker@ucar.edu

National Center for Atmospheric Research

Outline

- Motivation
- Analytic response to damping
- Ensemble spread in two similar models
- Ensemble spread in two very different models
- Limitations and complications
- Conclusions

Under-dispersive ensembles

- Overprediction of forecast skill by unknown amount
- Poor prior error-covariance estimates for data assimilation

Under-dispersive ensembles

- Overprediction of forecast skill by unknown amount
- Poor prior error-covariance estimates for data assimilation

Source: Simmons and Hollingsworth 2001

Spread in spectral space

$$\sigma_S^2 = \sum_{k=1}^{N-1} \hat{S}^2 = \sum_{k=1}^{N-1} \left(\hat{P}^2 + \hat{Q}^2 - 2\hat{P}\hat{Q} \right)$$

- Spectral coefficients denoted $\hat{*}$ are functions of wavenumber k.
- ightharpoonup P, Q are two members of an ensemble.
- Implied sum over all possible pairs.

A damped model

At a single time t and wavenumber k, damp the model with a filter R(k):

$$\hat{p} = R\hat{P}, \ \hat{q} = R\hat{Q}$$

Call it a *deficiency* in scale-dependent spatial variance (forecast amplitude). It results in a damped spread \hat{S}_f^2 :

$$\hat{S}_{f}^{2} = \hat{p}^{2} + \hat{q}^{2} - 2\hat{p}\hat{q}$$

$$= R^{2} \left(\hat{P}^{2} + \hat{Q}^{2} - 2\hat{P}\hat{Q}\right)$$

$$= R^{2}\hat{S}^{2}$$

Consequences

How about a real model?

- Error growth depends on case and forecast time
- R is not smooth
- ullet For many forecast systems, we can estimate R

How about a real model?

- Error growth depends on case and forecast time
- R is not smooth
- ullet For many forecast systems, we can estimate R

$$R = \frac{\hat{p}}{\hat{P}}$$

$$\hat{S}^2 = \frac{\hat{S}_f^2}{R^2}$$

$$\sigma_S^2 = \sum_{k=1}^{N-1} \hat{S}^2$$

We can calibrate ensemble spread to any reference \hat{P} .

Two similar models

Day 6 50.0 kPa geopotential height

WRF-CCM example

Two similar models

Day 6 50.0 kPa geopotential height (5480 m contour)

WRF-CCM example

Averaged over 6 cases 2001/02 cool season, using 10-member ensembles:

Averaged over 6 cases 2001/02 cool season, using 10-member ensembles:

Averaged over 6 cases 2001/02 cool season, using 10-member ensembles:

Can we correct this with an estimate of R?

Estimating R

Estimating R

Calibration

Two different models

Day 6 50.0 kPa geopotential height

WRF-DMP example

Two different models

Day 6 50.0 kPa geopotential height (5480 m contour)

WRF-DMP example

Averaged over 6 cases 2001/02 cool season, using 10-member ensembles:

Averaged over 6 cases 2001/02 cool season, using 10-member ensembles:

Averaged over 6 cases 2001/02 cool season, using 10-member ensembles:

Can we correct this with an estimate of R?

Estimating R

Calibration

Error diagnosis

Complications and limitations

The calibration only addresses amplitude deficiencies in a model.

Computing spectra on limited-area domains presents its own challenges.

Conclusions

- Damping in a model will lead to underdispersive ensembles and overly optimistic estimates of predictability.
- Amplitude deficiencies can be corrected with an empirical estimate of the time-dependent ratios between the spectra of different model solutions.
- Residuals (uncorrected spread) provide a measure of the effects of additional model error on ensemble spread.

To do:

Seek calibration that corrects for a larger class of error.